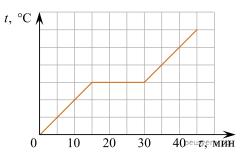
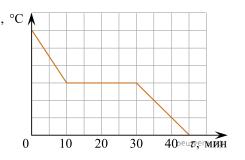
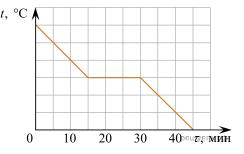

1. В момент времени $\tau_0=0$ мин жидкое вещество начали охлаждать при постоянном давлении, ежесекундно отнимая у вещества одно и то же количество теплоты. На рисунке приведён график зависимости температуры t вещества от времени τ . Одна треть массы вещества закристаллизовалась к моменту времени τ_1 , равному:


- 1) 5 мин 2) 20 мин
- 3) 25 мин
- 4) 30 мин
- 5) 35 мин

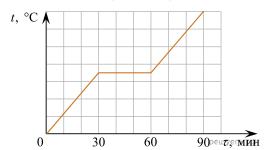
2. В момент времени $\tau_0=0$ мин жидкое вещество начали нагревать при постоянном давлении, ежесекундно сообщая веществу одно и то же количество теплоты. На рисунке приведён график зависимости температуры t вещества от времени τ . Две трети массы вещества испарилось к моменту времени τ_1 , равному:


- 1) 5 мин
- 2) 10 мин
- 3) 20 мин
- 4) 25 мин
- 5) 45 мин

3. В момент времени $\tau_0=0$ мин кристаллическое вещество начали нагревать при постоянном давлении, ежесекундно сообщая веществу одно и то же количество теплоты. На рисунке приведён график зависимости температуры t вещества от времени τ . Две трети массы вещества расплавилось к моменту времени τ_1 , равному:


- 1) 10 мин
- 2) 15 мин
- 3) 25 мин
- 4) 30 мин
- 5) 40 мин

4. В момент времени $\tau_0=0$ мин кристаллическое вещество начали охлаждать при постоянном давлении, ежесекундно отнимая у вещества одно и то же количество теплоты. На рисунке приведён график зависимости температуры t вещества от времени τ . Половина массы вещества закристаллизовалась к моменту времени τ_1 , равному:


- 1) 5 мин
- 2) 10 мин
- 3) 20 мин
- 4) 30 мин
- 5) 35 мин

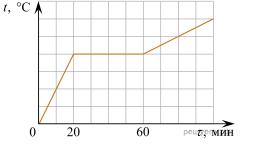
5. В момент времени $\tau_0=0$ мин жидкое вещество начали охлаждать при постоянном давлении, ежесекундно отнимая у вещества одно и то же количество теплоты. На рисунке приведён график зависимости температуры t вещества от времени τ . Две трети массы вещества закристаллизовалась к моменту времени τ_1 , равному:

- 1) 10 мин
- 2) 15 мин
- 3) 20 мин
- 4) 25 мин
- 5) 40 мин

6. В момент времени $\tau_0 = 0$ мин вещество, находящееся в твёрдом состоянии, начали нагревать при постоянном давлении, ежесекундно сообщая ему одно и то же количество теплоты. На рисунке показан график зависимости температуры t некоторой массы вещества от времени τ . Установите соответствие между моментом времени и агрегатным состоянием вещества:

	Момент времени	Агрегатное состояние вещества
	A) 10 минБ) 50 мин	 1 — твёрдое 2 — жидкое 3 — жидкое и твёрдое

1) A1_{b2};


2) A153;

3) А2Б1;

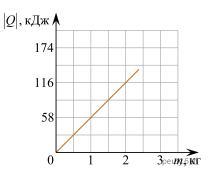
4) A2₆3:

5) A3_B1.

7. В момент времени $\tau_0 = 0$ мин вешество, находящееся в твёрдом состоянии, начали нагревать при постоянном давлении, ежесекундно сообщая ему одно и то же количество теплоты. На рисунке показан график зависимости температуры t некоторой массы вещества от времени т. Установите соответствие между моментом времени и агрегатным состоянием вещества:

Момент времени	Агрегатное состояние вещества
A) 10 минБ) 50 мин	 Твёрдое жидкое жидкое и твёрдое

1) A1_{b2};


2) A153;

3) A2₅3;

4) A3_B1;

5) АЗБ2.

8. На рисунке представлен график зависимости количества теплоты, выделяющегося при конденсации пара некоторого вещества, находящегося при температуре кипения, от его массы. Удельная теплота парообразования L этого вещества равна:

1) 29 $\frac{\kappa \Delta \pi}{\kappa \Gamma}$; 2) 58 $\frac{\kappa \Delta \pi}{\kappa \Gamma}$; 3) 116 $\frac{\kappa \Delta \pi}{\kappa \Gamma}$; 4) 174 $\frac{\kappa \Delta \pi}{\kappa \Gamma}$; 5) 300 $\frac{\kappa \Delta \pi}{\kappa \Gamma}$.

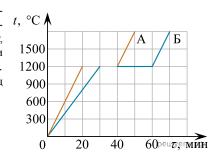
9. Для полного расплавления льда ($\lambda = 330 \text{ кДж/кг}$) массой m = 3.0 г. находящегося при температуре t = 0 °C, льду необходимо сообщить минимальное количество теплоты, равное:

1) 990 кДж 2) 900 кДж 3) 99 кДж 4) 9,1 кДж

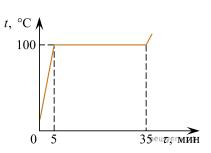
5) 0,99 кДж

10. Для полного расплавления льда ($\lambda = 330 \text{ кДж/кг}$) массой, находящегося при температуре t = 0 °C, льду сообщили количество теплоты O = 1.1 МДж, то масса льда была равна:

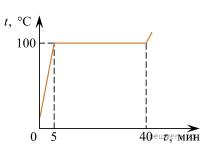
1) 0,003 кг

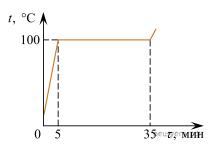

2) 0,03 кг

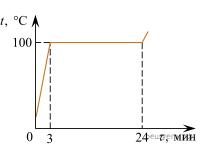
3) 0,30 кг 4) 0,36 кг

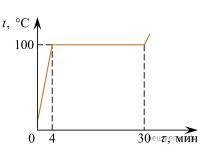

5) 3,3 Kr

11. В плавильной печи с коэффициентом полезного действия $\eta = 50.0$ % при температуре t_1 = 20 °C находится металлолом $\left(c=461\ \frac{\mbox{${\rm Д}{\it ж}$}}{\mbox{${\rm K}{\mbox{$\Gamma$}}\cdot{\rm K}$}},\ \lambda=270\ \frac{\mbox{${\rm K}{\mbox{${\rm J}$}}\mbox{${\rm K}{\mbox{${\rm K}$}}}}{\mbox{${\rm K}{\mbox{${\rm K}$}}}}\right),$ состоящий из однородных металлических отходов. Металлолом требуется нагреть до температуры плавления $t_2 = 1400 \, ^{\circ}\mathrm{C}$ и полностью расплавить. Если для этого необходимо сжечь каменный уголь $\left(q = 30,0 \, \frac{\mathrm{M} \mathrm{Дж}}{\mathrm{Kr}}\right)$ массой M = 18,0 кг, то масса m металлолома равна ... кг.

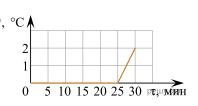

12. Два образца А и Б, изготовленные из одинакового металла, расплавили в печи. Количество теплоты, подводимое к каждому образцу за одну секунду, было одинаково. На рисунке представлены графики зависимости температуры t образцов от времени τ . Если образец Б имеет массу $m_{\rm B} = 4.5$ кг. то образец A имеет массу m_A , равную ... кг.


13. К открытому калориметру с водой ($L=2,26~\frac{{\rm M} \square {\rm ж}}{{\rm к} \Gamma}$) ежесекундно подводили количество теплоты $Q=59~{\rm Д}{\rm ж}$. На рисунке представлена зависимость температуры t воды от времени τ . Начальная масса m воды в калориметре равна ... Γ .


14. К открытому калориметру с водой ($L=2,26~\frac{{\rm M} \hbox{Дж}}{{\rm к}{\rm \Gamma}}$) ежесекундно подводили количество теплоты $Q=84~{\rm Дж}$. На рисунке представлена зависимость температуры t воды от времени τ . Начальная масса m воды в калориметре равна ... Γ .


15. К открытому калориметру с водой $\left(L=2,26\ \frac{{\rm M} \mbox{${\rm J}_{\rm K}{}_{\Gamma}}}{{\rm K}\Gamma}\right)$ ежесекундно подводили количество теплоты $Q=93\ \mbox{${\rm J}_{\rm K}{}_{\Gamma}$}$ воды от времени τ . Начальная масса m воды в калориметре равна ... г.

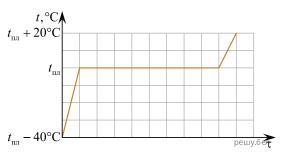
16. К открытому калориметру с водой ($L=2,26~\frac{{\rm M} \square {\rm ж}}{{\rm кr}}$) ежесекундно подводили количество теплоты $Q=97~{\rm Д}{\rm ж}$. На рисунке представлена зависимость температуры t воды от времени τ . Начальная масса m воды в калориметре равна ... r.



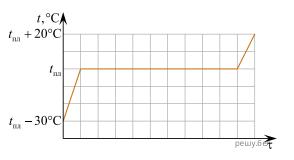
17. К открытому калориметру с водой ($L=2,26~\frac{{\rm M} \square_{\rm K\Gamma}}{{\rm \kappa}\Gamma}$) ежесекундно подводили количество теплоты $Q=58~{\rm Д}$ ж. На рисунке представлена зависимость температуры t воды от времени τ . Начальная масса m воды в калориметре равна ... Γ .

18. В теплоизолированном калориметре с пренебрежимо малой теплоёмкостью находится вода $\left(c_1=4200\,\frac{\text{Дж}}{\text{кг}\cdot{}^{\circ}\text{C}}\right)$ массой $m_1=750\,\text{г}$ при температуре $t_1=25\,{}^{\circ}\text{C}$. В калориметр добавляют лёд $\left(c_2=2100\,\frac{\text{Дж}}{\text{кг}\cdot{}^{\circ}\text{C}}\right)$, $\lambda=333\,\frac{\text{кДж}}{\text{кг}}$ массой $m_2=310\,\text{г}$, температура которого $t_2=-10\,{}^{\circ}\text{C}$. После установления теплового равновесия масса m льда в калориметре будет равна ... г.

19. В открытом сосуде находится смесь воды и льда t, °C (удельная теплоёмкость воды $c=4200~\frac{\mbox{$\frac{1}{\rm K}$}\mbox{$\frac{1}{\rm K}$}\mbo$



нату и сразу же начали измерять температуру содержимого сосуда. График зависимости температуры t смеси от времени τ изображён на рисунке. Если количество теплоты, ежесекундно передаваемое смеси, постоянно, то масса $m_{\scriptscriptstyle T}$ льда в смеси в начальный момент времени была равна ... г.


20. В открытом сосуде находится смесь воды и льда (удельная теплоёмкость воды $c=4200~\frac{\mbox{$\frac{\mbox{$\frac{1}{2}$}\mbox{$\frac{\mbox{$\kappa$}\mbox{$\Gamma$}}}$}}{\mbox{κ}\mbox{Γ}}$, удельная теплота плавления льда $\lambda=3,4\cdot10^5~\frac{\mbox{$\frac{\mbox{$\frac{1}{2}$}\mbox{$\frac{\mbox{κ}}{\mbox{κ}}}$}}{\mbox{$\kappa$}}$). Масса льда в смеси $m_{\pi}=63,0$ г. Сосуд внесли в тёплую комнату и сразу же начали измерять температуру содержимого сосуда. График зависимости температуры t смеси от времени т изображён на рисунке. Если

количество теплоты, ежесекундно передаваемое смеси, постоянно, то общая масса $m_{\rm cm}$ смеси в начальный момент времени была равна ... г.

21. На рисунке представлена зависимость температуры t тела от времени t. Удельная теплоемкость вещества тела $t_{\rm пл} + 20^{\circ}{\rm C}$. В твёрдом состоянии $c = 1,50 \frac{{\rm K} \square {\rm K}}{{\rm K} \Gamma} \cdot {\rm C}$. Если мощность нагревателя постоянна, а теплообмен с окружающей средой не учитывать, то удельная теплота плавления λ вещества равна ... $\frac{{\rm K} \square {\rm K}}{{\rm K} \Gamma}$, $t_{\rm nn} = 40^{\circ}{\rm C}$

22. На рисунке представлена зависимость температуры t тела от времени t. Удельная теплоёмкость вещества тела $t_{\rm пл} + 20^{\circ}{\rm C}$ в твёрдом состоянии $c = 500 \frac{\text{Дж}}{\text{кг} \cdot \text{°} \text{C}}$. Если мощность нагревателя постоянна, а теплообмен с окружающей средой не учитывать, то удельная теплота плавления λ вещества равна ... кДж/кг. $t_{\rm пл} - 30^{\circ}{\rm C}$

